A NEW SPECIES OF FRESHWATER AMPHIPOD, AUSTROCHILTONIA DALHOUSIENSIS SP. NOV., (CRUSTACEA: AMPHIPODA: HYALELLIDAE) FROM DALHOUSIE SPRINGS, SOUTH AUSTRALIA

by W. Zeidler*

Abstract

Summary Micy, 1997 it is very similar to other species of Ausmudhiomia found in mound springs near Litke Eyre South but preliminury electrophoretic andysis of allozymes supports the recognion of a dastinct species. it most closely which collectively distinguish it Jrom its congeners.

 taxonomy:

Introduction

Amplipod speceics of the genus Aus rorehitomia are among the moss common crustaceans found in the pernanent treshwaters of souffern Australia ranging trom New South Walles in Western Australia and meluding lasnamia. More recently Austhehiltomia has also been found in the infand waters of atestan sprongs in South Austratia (Zeider 1989) and an "Edghasdon" morih-east of Aramac, Queensland (personal collection. May 1988).
When I reestublished the genus Austrechilonia (Zudder 1988) it was my inlention to proced with an Australian revision of the genus beginning with the description of species found in the mound speings near Lake Eyre South and at Dalhousie Springes in northern South Australia. Since then I have examined a large number of apecimens fron wide-ranging habitats in southern Australia and have found them all to be very similar morpholegically and difficelt to distinguish from the noly previausly-deseribed species, A anstralis (Siyce- 1901) and A suhtrmis: (Sayce, 1902). Williams (1962) revised the systematices of these two species based on type material and a range of specimens from New South Waler. Victoria, Tasmania and Rotmest Istand. Western Australia and likewise found that, mosphologically, specific differences are minimal However, a preliminary analysis of allozymes of pecimens from the Soliti Allstatan monid springs: using electrophoresis, indisates that Ausirectullomiax is most likely a very speciuse genus. Given itio

[^0]potential enornity, the projeet was ahandoned due to lack of resources.

The species found at Dalhousie Springs is most similar Io A. australi, Sayce. 1901 in that uropod 3 is. two-articulate. It has a very restricted distribution. onecurring at only three of about 80 aetive springs in the region (Zeidler 1989). Two of these springe are quite harge, with lagge outlows of warm water $\left(>-40^{\circ} \mathrm{C}\right)$ but Austenchitlonta is found conly in the distant ayerflow where the waler is enlder and elose to ambient temperature. However. one isolated specimen was collected from the edge of the pool of the main spring, which has a water temperalure of abour $35^{\circ} \mathrm{C}$. The other spring is a small relatively cold spring on the southern edge of the spring complex. In each case the animats were only fombd in the shatlow edges of swamps ar chamel amongest the base of the sedge Cyperus ladvigans 1as 1771 and sometines alse the reed Phrugmites unstrotis (Calv., 1841).

The restricted and isolated distetbotion of this species of Austrichiltmia mukes if vulnerable to habitat disturbance even though Dathousie Springs is within Witjira National Park, The purpose of this paper is to establish the taxon sio that park managers and visitors cim appreciate its signiticance aud potential vulnorability.

Materiaks and Methods

The Dalhouste Springs complex (Ftg. If consists of aboul 80 aclive springs all of which were sampled in 1985 (Zeidler \& Ponder 1989) hut Aushochiltomia was found in only three springs (Fig. 2). The springs ate coded hallawing Zender \& Punder (1989. Fig. 2).

Animals were collected from amongst sedges and reds with a mall hand sieve or picked alf plant debric with forceps. A total of 424 specimens (230) © ㅇ, $1740^{7} 0^{7}, 20$ juveniles) was collected and examined.

Physicochennical data for the sites sampled are limited but some measumements were mande near the main solurce of the spring. These datat are given in

 InumRadler (川)|.

Tible I and datio on neathy springs are also available (Smith 1959).
The new species was comprared with the descriplions of Amsurnchillomia given by Williams (1962) and with specimens of A. amatralis from Dandenong Creek. Victoria (SAMA C3872) identified by Williams and used in the study by Smith \& Will bims (1983).

Miterial reported here is deposited in the South Australian Museum, Adelade (SAMA) and the Austablian Musemm. Sydney (AM). Nll ipecimens are preserved in 75% efbanol or 2% formatdehyde/propylene-glyeol solution. Of the bypes, only the holotype and allotype have been dissected (partially), with appendigen removed from the left hand side of the animat unless wherwise indicated. Dissected appendages are preserved with the carcelsh or, in the case of the holotype, the mouthpats, uropods and telson are mounted in polyvinyl lactophenol on a microscope slide.
Specimen length is measured along a lateral parabolic dine drawn lion the anteriof extrentity of the head through the mid-lime of the body wo the posterion limit of the telan using a pair of dividers and sciale.

The thoracie limbe are referned to as ghathopod 1 and 2 followed by pereopods 3-7. Size comparimon of gathopods exclade the eoxa and dinctylus. and af the pereopooks, the conde with anticten being macasured along the mid-line.

The lollowing abbeviation ate used in the lext
 $=$ limst $\&$ second gnathopod: LA $=$ lower lip: $\mathrm{Md}=$ mandihle: $\mathrm{M} \times 1, \mathrm{M} \times 2=$ litst \& second matailat: Mxp $=$ maxilliped; $02-5=$ onstegites from pereopode $2-5$: P3-7 $=$ percopods 3.7: Pll $=$ dirst pleopuedi: ${ }^{\circ} \mathrm{T}=$ felson; UL-3 $=$ uropods $1-3: U L=$ upper lip: $r=$ used as sullix to indicate that appendige was taken from right hand side of the ammal.

Field Clumistry

Spring	Tomp. All C"	「emp. Wiblet ${ }^{5} \mathrm{C}$	Temp. ${ }^{\circ}$	Cond. 25C sicmens	$\begin{aligned} & \text { TDS } \\ & 10 g 1 \end{aligned}$	pH	$\begin{aligned} & D 0 \\ & \mathrm{ppm} \end{aligned}$
Call - chamat to main prool	-	-	13	1.490	865	7.3	3.8
Cal - main poot	20)	37	3.4	1780	$10(0)$	7.9	0.7
Cal-main discharge chamed	25	36	33.5	2050	1150	7.7	4.7
Cdz SW edge or pers	15	32	3.2	15.50	850	7.9	11.3
Calz - an near swamp	15	11	18	16.50	-	7.8	7.6
Gh1	13	16	20	7610	4850	7.1	4.8

Fie. 2 Dalhousie Springs complex showing springs (coded) from which Austrochihomia dathonsiensis sp, nov. was colleeted. Collcetion sites for CaI and Cd 2 are arrowed. Other major springs are shown as dots. Swamps from springs and creek heds are stippled (iight stippling indicates ephemeral stream beds and heavier stippling areas of 'permanent' water).

Systematics
 Austrochiltomia dolhousiensis sp. nov. (EIGS 3-9)

Anstor hifumasp. Zeidler. 1989:83-84. fig. 12.1B. 1491:-185
Holonywe os, Dalhousie Springs SA, from amongst feeds and sedges afong eastern edge of swamp created by outflow from main spring (Cal), 3.3 hm noth of edge of old airstrip $26^{\circ} 23^{\prime} 07^{\circ} \mathrm{S} 135^{\circ} 30^{\prime} 26^{\prime \prime}$ E. 12.vi.1985, W. Zeidler \& K.L. Gowlett-Holmek. SAMA C565].
Alfriype. Ovgerous Q, SAMA C5652. Collected with bolotype:
Pupurpers AMP48840, 10 웅. $100^{\prime \prime} 0^{\circ}$, same Jata fit bolotyps. SAMA C5653, 24 우 ㅇ one ovigesous), $17 \mathrm{od} d$. satme data us holorype. SAMA (50,54, 37 우 (three ovigerons), 11 व口) same dato as holotype except 14. vi. 1985. SAMA C5655, Is 9 P -18 O $^{3} 0^{7}$ same data as holotype but 1.1 km fiarther north, $26^{\circ} 22^{\circ} 26^{\circ} \mathrm{S} 135^{\circ} 30^{\circ} 26^{\circ} \mathrm{E}$.

Other mutcrial veramineal: All from Dathourie Springs arca (Fig. 2). AM P48S41. I O (damagect), spring Cal, $26^{\circ} 25^{\circ} 00^{\prime \prime} \mathrm{S} 135^{\circ} 29^{\prime} 53^{\prime \prime}$ E, from edge of main pool, W F, Ponder \& D, Wimn, 3, vi. 1985. SAMA C5056, 21 우 (three ivigeroms). $310^{7} \sigma^{7}$, spring Cd2, from edges of swamp formed hy outlow, approximately 0.9 km NW of source. $26^{\prime \prime} 24^{\prime} 33^{\prime \prime} \$ 135^{\circ} 28^{\prime} 45^{\prime \prime} \mathrm{E}$, W. Zeidler \& K. . Gowlett-Holmes, 6,vi,1985. SAMA C5657. 14 QQ, $21 \mathrm{ob}^{3}$. same data as prerrou* tot excepi 14.vi. 1985 . AM P48842, 10 Q \& lone ovigerous) of $\sigma^{*} \sigma^{*}$, prigg Cibl from edges of swamp, $20^{\prime \prime} 3112^{\prime \prime}$ S $135^{\circ} 29^{\prime} 26^{\prime \prime} \mathrm{E}$ W. F, Ponder \& D. Winn. 5,vi, 1985. SAMA C5658, 90 of o (three ovigerousi, $610^{\circ} \circ^{\circ}$. 20) juveniles, same data af previous of extept collected W. Devider \& K. I. Gowletr-Holmes.

Descitiphion oy holotype male (Figs 3-h)

Length 3.8 gmm . Head about is Fong as deep, length alomst eguvatlent to lifst two perermites, Atiema 1 about $3 x$ lengit of head; peduncular article 1 lengit 1.5x widif, articles 2 and 3 subequal in lenglts about 0.758 lengit of arricte 1: Tigellum stighty longer than I.5x peduncle, of nime articles with one ventris aesthetisc it base of each of last foor articles. Antefinat 2 about $0.7 x$ tength of Al with ebtatacterstic gland cone at base; pedunctlar article I slighlly wider than long, article 2 width aboul 0.78 length. $2 x$ as long is articte 1 and 0.7 x lengit of artele 3: flacellumslighty longer than peduncte; of wight articles.

I pper lip slightly wider than longe apically romded, bearing numerous short setae apically. Lower lip with vestigial inner lobes; outer lobes suborate with setose distal and inice margias.

teeth, lacina mobilis of five teeth, spine row of three feathered spines and triturative molar; rugh with incisor of five teeth, lacina mobilis of three teeth, spine row of two leathered spires and thaturative molar with one Jong feathered seta.

Maxilla I without palp, notched at palp's nomal posilion: outer plate wath mine ecomb-bike spines apically: inner plate very narrow with two feathered spines apicadly.
Maxillia 2 ; buter plate atboul $1.5 x$ length of inoer plate, setal row restricted to apex; inner plate swits one large seta medially about 0.4 from apex. setal row apically and medially almost to large seta.

Maxilliped; inner plate large, sub-rectangular: reaching end of merus, maximum widh ahout $3 x$ length of outer margin, with three apical spone feeth. the inmer one smaller. four plumose setae on inner margin and several apically; ourer plate ovate, reaching midway along inner margin of carpos, thout as wide is inner plate apical margin with tivee setae, inper margin with several setae for distal ball, palp large, 4-articulate: merus proximally narrow, sub-uriangular, outer margin about $2 x$ length of inner margin with rwo setac on inner distal angle; curpris Sightly broadec than long, slightly expanded distally, distal iwo-therds of inner margin with row sil setae. twes selae on outer distal angle and also near inner disai angle: progodes slightly naryower and shomer than carpus, distis margin with several strong serac: curved dactylus with stong angus.

Coxal gills saturge shaped present from G2 to Ph
Gnathopod 1: coxa slighdy longer thim maximunt width, proximal width about 0.7 x distal width, anterier margin concave, posterior margh straight. distal margin eyenly rounded with several eyendy spaced selate: carpus Iriangular with large pusterodistal lobe. with anteriot maggin almost is length of posteriof margin inaximum width about J. $5 x$ that of anterior margin, posteriof misigin with clone-sel row of nine stout pectinate spines: propordus sub-rectungular. about $1.4 x$ lemeth of carpus, slightly wider distally. widith 0.6x lemglh. posteredisial corner with iwo stust spines on either side of dactylus. eluster of long setae on anterodistal comer, row of seven long setale medially. mixture of long and shot setace near distal margin: dactylus shightly shorger them width of propodus fitting neally against palm. Grathopod 2 leng(t 7 . $6 x$ that of Git: coxal gill length $2 x$ widh. Fille shorles than cosia: coxa rectangular, slightly tonger than wide aboun Q.88 length of basis. disud shargin evenly munded with several evenly-spaced setae. merus, with rightanglad bend: carpas similar to GI but without pectinate spines; propodus slightly shotter than basis, length anterior mangin 1.5x inaximum width. posterppoximal corner formme roanded lobe, palin sthlique with numerdus spines of varying lengiths son

Fig. 4. Austhochiltomik dallousichsis sp. nov., bolotypo of. Scate bar $=0.1 \mathrm{~mm}$.

Fig. 5. Austrochiltomia dathousiensis sp. nov., holotype o's. Scale bar $=0.2 \mathrm{~mm}$.

Fig. 6. Austrochiltonia dalhousiensis sp, nov, holotype σ^{\prime}. Scale bar $=0.2 \mathrm{~mm}$.
either side of cutting edge followed by shallow stoove for tip of dactylus; dactylus claw-like, as-long ass anterior margin of propodus-
Tereopod 3 with part of propedus and dactylus missing on right: coxal gill length almost $2 x$ widith, about $0.75 x$ length of coxas coxa like that of G 2 b bu slightly larger, slightly shorter than basis; merus $11.5 x$ as long as basis, anterdistal comer produced campos 0. $75 x$ lenglts of meriss. Pereopod 4 simular in P3: slightly longer than G2: coxa with distinet posteroproximal excavation, maximum width slighty more than Jength, slighty longer tham basis: propodus sliahty longer than merus; daetylus stout. lengit slightly less than (0.5x of propodus. Pereopod 5 slighty Jonger than P4; coxal gill length about $2 x$ width, stighty longer than basis; coxil width about $1.5 \times$ thal of basta, ankrior lobe slighty more than $0.5 \times$ lengith of basis, posierior lobe aboul $0.8 \times$ lengits of hasis: hasis slightly fouger than wide with typical expanded posteriot margin and posteroslisalal lobe reaching to ubout midvay of ischium; meras with poserndistal conmer produced. length aboui 0.7 s . hai of bacis: carpus slightly shorter than merus: propeoders Iength $1.4 x$ that of carpus; ductylus stsut. $0.5 x$ length of propodus. Pcreopod 6 length $1.3 \times$ that of 15: cosat gith length aboul 2x widh. whom 0.75x lengih of hasis; coxabimost as wide as bacis, anterior lobe 0.3 x leugth of basis, posteriot lobe 0.8 x length of basis; remmining articles like those of P5 hut basis with straight posteroproximal shoulder and campus shaghty lenged than meras. Pereopod 7 longest, slightly exceeding P6. like PG but cosa semi-vinular and lacking coxal gill. widit 1.4x length. alowe 0.4x length of basis: positeroctistal lobe of basis moite expanded reaching to about midway of netus.

Pleopords all unmodiliced (mot ax in Chiltomia).
U Hegod I whout $1.5 \times$ length of U 2 ; peduncle with spine on inner iund suter distal comer. three latge and one smaller spine on dorsal oulte matgin, one small spue on inner inargin: outer ramus slighlfy shorter than inner length $0.7 \times$ that of peluncle, with two median and three leproinal spines: imer ramus with two small and three larger termunal spines and three medially. Uropod 2: peduncle with spine on imer: and ower distal corner and additional ome on dorsal margin; inner ramus ! 2 x length of outer ramus and $1.3 \times$ that of peduncle, live large spines elastered fervinally and three spaced evenly medially: imer pamus with 20 spines of varying sizes gradually chaser together towards ip. Uropod 3 two-articulate. marginatly mere than $0.5 x$ length of retson: ramus $0.5 \times$ kength of peduncle with three long setae and one short setu corminally.

Felsun entire, subrectangutar. sligbtify wider than lony, distal matgin slghty concave with two small serae at each womer

Description of allotype female (Figs, 7-9)

Lengit 3.8 mum. ovigerous with 23 eggs in broodpouch, same as male except for the following,
Antenna 2, flagellum of seven arlicles.
Grathopod 1; cosa relatively narrower and fonger than for male, width distally $0.8 \times$ length; possetion margin of carpus with close-set row of 10 pectinate spines: propodus relatively marrower tham for male, slightly Tonger than carpus. Gnathopod 2 length 1.2 x that of G1: coxal gill relatively smadler, less than 0.5x length of coxse coxa with posterior margin produced to poim medally, maximum width (1) $8 x$ length, as long as thasis: remaining articles like those of G! only relatively more slender. Pereopod 3 length about $1.3 x$ that of G 2 ; cuxa similar in shape ou that of G 2 . Pereopod 4 slightly shorter than P ; coxn without distinet proximal excavation, almoser ass wide as long: Pereopad 5 only matginally longer than P4: coxa width about $1.7 x$ that of basis: merus, carpus and propodus relatively shorter than for mate. Percopod f: basis with posterior margin rounded proximally: merus. carpus and propodus relatively shener than for male. Pereopod 7 slightly shonet than Po; basis relatively narrower, and merus, carpus and propodus successively slighty shoiter thad for make.
Oostegites on coxace 2-5, all with corled margins and numerous smath hooks, together tormong tight macsupium. First heart-shaped, length L.6s maximum widh. abour $0.7 \times$ lengh of Giz seennd utipezoid, length atmost $0,5 x$ that of $\mathrm{P3}$, maximum width alniwst 0.5 x leigthi, thind oval-shaped of similar size to second; fourth sub-rectangular with nblique distal margins length anteriorty almost 0.5 s that of P5. maximuth width ahnost equal to leugth of posterior margin.
Uropod I lengith 1.6x that of L12: peduncle with five large and one small spinc on sulter margim, inter margin with two small spines proximally in addition of latge xpine on distal comer suler ramus as long is inner, length 0.8x that of peduncle widr two large and two smaller spines terminally and two medially; inner ramus with three large and two smaller spines. terminally und two medially. Uropod 2 peduncle with twe large spines on outer pargin; onter ramus stightiy slooter thati imner, length $1.3 x$ that of peduncle, one large and liva smaller spines teminally, tiree large spines medially: infer ramos with twa terminal spines. cluster of foar near tip and another twe thedially.
Telsom with group if three small setae at sach comer.

Envurlug:

loken from the type locality in recugnition of the vestricued distriturgon of the speenes.

Fig. 7. Austrochiltomia dalhousiensis sp. nov., allotype ? . Scale bars $=0.2 \mathrm{~mm}$.

Fig. 9. Austrochiltonia dalhousiensis sp. nov. Oostegites from allotype 9 . G1-P4 from paratype $9,4.8 \mathrm{~mm}$, from SAMA C5653. Scale bar $=0.2 \mathrm{~mm}$.

Variation

Apart from minor variatibus due to size. paratype and othe material examined is very similar to evther the holotype of allolype. The maximum recorded size of males is 5.2 mm and that of femates 6.5 mm fut most specimens examined are around 4.0 mmL long. Minor differences between specimens generatly were nuted as folfons. The number of flagellar articles of AI varies frum eight of ten with one small specimen having seven: $A 2$ has from six to nite flagellar articies but toust specimets have anly seven or eight. The number of sestheases on Al is remarkably combtan with only sume latger spectiones hiving an dxtra one (live). The mumher of pectinate setue on the capus of G 11 varies from sevent fo nine in males and eight to teli in females (similaty For G 2 of females). In the allotype the coxac of G_{2} P4 are of an unusual shape, differing from mades and nemovgerons lemates (Fig. 9) in that the postention margin is produced to a point mechally and PA is without a proximal excavation. In the hololype the basis of P6 has a relatively straight posteroproximal shoulder hur in nearly all other specimens examined the forstenor matein is evenly rounded. Pereopod 7 is oseatly longet than Pfi but in the allotype is is slightly shorter, probably becaluse of the relatively shorter pogodas which is nomatly longer than the carposs The spination of $1 / 1$ \& 2 varies slightly with latger specimed havioe tone of two extra spiocs the the peduncle and rami. Uroposi 3 is usually iwo articulate and only one specimen ia lemale from C5653) had 43 with one article and then only on the bight-hand side Oostegites of females vary cinusiderably in size but are expanded, is illusurated for the allorype, in ovigerous specimens.
The possibility that speciation may have necurred between spyings witheut any obveos morphological changes was considered and specimens fin allozyme efectoptioretic analysis were collected fromall three. localithes. A preliminary analysis of this materiad usimg methods oullined hy Richardson ef al. (1986) indicatel fised genelic differences of 10% or leser (for 21 Inci). thus supporting the morphological eviderice of ane species with litle ratialion. Given these results. it more detalled analyess was considered unnecessary.

Discussiou

The new species descobed here clusely resembles A. austratis in lhat 03 is, Iwo-articulate. Howerer, at number of minor features eotlectively esadily distmgursh it from this specses and ofs only other congener, A. sublemuis. The mben distmenstring features are as follow. Females, seach a larger she than matco and the speces is penetady not as largeas

mon) or A. sulderutis (mides up to 10.0 mm , Females up to 6.4 mom). Antenna I has lewer aesithetuses (5-7 in A. australis). Both antennae have fewer flagellar articles. (A1 up to 17. A2 up to 11 in A anstralis). The coxace of A. dathousiousis sp. nov are relatively wider and the exeavation on coxit 4 is not us deep as in A. australis or A. subuthais. In both A. arevtratis and A. subtenues, the lateral margin of the excavation of coxa 4 is at right-angles to the posterior margin whereas in A. dathouscientiss the aingle of the coxal excavation is much greater than 900°. In ovigerous Eemales of A dalhousiensis the coxate of G2-P4 have the posterior margin produced to a point medially and caxa 4 is widkous a chatacteristic excavanion. There are fower poctimate spines on the catpus of Gi (miales) and G1 \& 2 (females) than in A. austrulis (uswally $\gg 10$). Foe GI (males) and (i) \& 2 (temales) the carpus is slightly shorter than the propodus whereas the reverse is trie for A unstralis, Other misor differences between the new and other species no doubt exise but were not evident in the presen stady.

Austrochiltonia itathomsimsis is alsen similar lor Pheranchilonia umplrihatmu peiller. 1991, a phreatic species which also has a limited distriburion it Dalhousie Springs (Zeidler 1991). Espocially in that ovigerous femules of A. delluasiensis have coxat 4 witheyt an excavation. a feature characterstic of l : smophthaimet. Given the isolated habian of Dalhouste Spinings, one would suspect that these twa spectes watal have ecommon ancestry. Howevel. since electrophoretic anslysis hath shomin that they differ at about 80% of the 21 loci examines, this dues not appear to be the cate,

The closest relatives geographically, apart fiom P amophuthona, are species ol Auserochithoniad found io the moand springs near Lake Eyre Sooth. Although A. eterlimusiensis is notphologically very similar to these species, electrophoretic analysis has sthown that it affers from them at $73-80 \%$ of the 21 lowi exammed. Clearly a more detaded motphological and genetic stody of the genus is requifed to derermane relationships.

A single, damaged femate of A, dathomsiensis wasfound it the poof of speting Cil (AM P 488413 . The record may be due to contanilated collecting equipmem as the water temperature at that losadity is $37^{\circ} \mathrm{C}$ and Ireshwate dmphipods pecter cooler waters (Barnated \& Barnard 1983). It thetelote seems unikely that A. chltornamensir occurs naturally in the poot of Cal bat its passible occurrence at thes locality watrants further investigationt.

The factors determining the distobulan of thas species are unknown. Its restricted Instabution at Dalhousic Sprimes is purding th many wparenty suitable habitats exist in which this specics was rom found. Athough restrieted in its distrbutron), the species is fetatively abondant at all of the collection siles.

Like P. amophthatmu, the presence of this species all Dathousic Springs on the edge of the Simpson Desert suggests that it is a remmant of a onee more widespread fauma during at time when central Anstralia was much wetter than it is Ioday (Krieg 1989).

Acknowledgments

I am most grateful to Dr W. F. Ponder (AM) for his axivistance in organising the 1985 expedition to Dithousie Springs. He is also thanked for his
assistance in the lied and for cotlecting specimens. ins is Ms D. Winn (AM). M S K. L. Gowlett-Hotmes (SAMA) assisted greatly with fiedd work and the collection of specimens. Mr M. Adanss Evolutionary Biology Unit SAMA conducted the electrophoretic analysis and his expertise is gratelully acknowledged. I also wish to thank Ms J. Thurmer (SAMA) lor preparing bromides of the figures and Ma D. Churches who typed the manuseript.

This stuly was supported by funds from the South Australian Museum.

Relerences

BAKNAKD.J. L., \& Barnard. (. M 1198.3) "Jitestwater Amphipoda of the Worla. 1. Evolationary l'alterns. (llay Jiclal Associates MI Vermom. Virginite).
 Fonder. W. F (Fds) "Natural History of Dathousic Spmings" (SA Muscum, Adelaide).
RICHARUSON, B. I. BAVERSTOCK, F. R. \& ADAAS. M. (19SG) "Alloy yne Flecorophoresis" (Acadenmic Prens. Sydasy).
SAkil: O. A. (fyol) Descriplion of some new Viclotian Iresh-water Amplipoda. Pror. R. Sos. Vics. 13, 225-242. (1002) Dexcriplens of sonse new Victorian lieshwaller Amphipodit, No. 2. Ilvid. 15, 47-5x.
 \& Ponder, W. F. (Eds) "Natural History of Dallonawic Springs" (SA Mtseum. Adelaide).
Stilif. M. J. \& WhliAms, W. D. (1983) Reprodiction cycles in some freshwaldo amphipods in sonthem Ansmalia. Mom. Musf. Mas. 18. 183-104,

Wilimas. W. D. (1962) The Australian frestuwaler imphipods 1. The genus Abriorhiltomit 1 Crustace: Amphipuda. Hyalcllidas). Susf. I Mar: Freshm: Re'r. 13. 184.216.
 shs (K.H. Barnard. 1916) witl at revicw of the fencrat of
 Aff: Miss, 98, 105-119
(1989) Crustacen pp. $79-87$ /a /reidler, W. © Ionder. W. I: (Lidx) "Natural J Jistory of Diltorosie Springs" (SA Muncum, Adelaide).
 pod (Comstacea, Amplipusda) belonging in the "Cliltonion" generic soroup, fiom Dabonsie Springe, South Austredia Trams K. Sos: S A\&st. 115. 177-187.
\& Pompris. W. I. (1989) Prefice pr. is-vi /b Zeidler. W. \& Ponder, W. F. (Eds) "Nallural History of Dalloonsic Sprines" (SA Masenmb. Adelaides).

[^0]: ज(0)

